针对三浮陀螺浮子在研制过程中的静不平衡问题,为提高浮子组件的静平衡精度和效率,提出了浮子轴向和径向静平衡的新方法。基于浮子静平衡原理,在常温粗平衡时,采用力矩平衡原理,可快速实现浮子轴向平衡。在常温精平衡时,首次引入智能控制领域的模糊控制(Fuzzy Control)算法,充分利用专家经验,实现浮子径向平衡。基于该方法,研制了一台陀螺浮子静平衡检测设备。通过正式浮子测试,本方法和设备已经成功实现了三种型号浮子组件的静平衡,平衡精度小于0.01μN·m,平衡效率提高了50%,且设备已获得实际的工程应用。
Abstract
In order to improve the precision and efficiency for static balance of float components, a new method for axial and radial static balance of float is proposed for the static unbalance problem of three-floated gyroscope in the process of manufacture. Based on the principle of float static balance, the moment balance is used to realize the float axial balance rapidly during the time of normal temperature rough balance. The fuzzy control algorithm in the field of intelligent control is introduced firstly to realize the float radial balance during the time of normal temperature fine balance, and the algorithm fully using the experience of experts. Based on the above methods, a set of the gyroscope float static balance testing equipment is developed. Through the formal float test, three types of float components have been successfully realized static balance by this method and equipment. The balancing precision of equipment is less than 0.01μN·m, the balance efficiency of equipment has been increased by 50%, and the equipment has been applied in the actual engineering.
关键词
模糊控制 /
快速静平衡 /
浮子 /
机器视觉 /
智能控制
{{custom_keyword}} /
Key words
fuzzy control /
fast static balance /
float /
computer vision /
intelligent control
{{custom_keyword}} /
中图分类号:
V241.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wang S M, Meng N. A new multi-position calibration method for gyroscope's drift coefficients on centrifuge[J]. Aerospace Science and Technology, 2017, 68: 104-108.
[2]Shen Y, Hasanyan D, Gao J Q, et al. A magnetic signature study using magnetoelectric laminate sensors[J]. Smart Material and Structures, 2013, 22(9): 095007.
[3]王雪, 邓忠武, 马宁. 三浮陀螺磁悬浮干扰力矩机理分析[J]. 中国惯性技术学报, 2017, 25(5):681-685.
WANG Xue, DENG Zhong-wu, MA Ning. Mechanism analysis on magnetic suspension bearing disturbance moment in three-floated syroscope[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 681-685.
[4]于家福, 徐静. 三浮陀螺仪磁悬浮轴承干扰力矩测控技术[J]. 导航与控制, 2014,13(1):15-20.
YU Jia-fu, XU Jing. The technology for measuring and controlling the disturbance torque for magnetic bearing of three-floated gyroscope[J]. Navigation and Control, 2014, 13(1):15-20.
[5]Hutterer M, Kalteis G, Schrödl M. Redundant unbalance compensation of an active magnetic bearing system[J]. Mechanical Systems and Signal Processing, 2017, 94: 267-278.
[6] Zheng S Q, Han B C, Wang Y G, et al. Optimization of damping compensation for a flexible rotor system with active magnetic bearing considering gyroscopic effect[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1130-1137.
[7]张琳, 杨涛, 王佳民. 半液浮陀螺浮子的静平衡方法研究[J]. 弹箭与制导学报, 2007, 27(3):74-76.
ZHANG Lin, YANG Tao, WANG Jia-min. The static balance method of half-liquid gyroscope floater[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(3): 74-76.
[8]刘国栋, 刘炳国, 李佳, 等. 陀螺转子静平衡测量方法的研究[J]. 计量学报, 2011, 32(3): 258-261.
LIU Guo-dong, LIU Bing-guo, LI Jia, et al. Study on static balance measurement of gyroscope[J]. Acta Metrologica Sinica, 2011, 32(3): 258-261.
[9]熊振仑. 陀螺仪浮子不平衡量测量技术研究[D]. 哈尔滨工业大学, 2017.
XIONG Zhen-lun. Research on unbalance amount measurement technology of gyro float[D]. Harbin Institute of Technology, 2017.
[10]Maksimović M, Vujović V, Milošević V. Fuzzy logical and wireless sensor network-A survey[J]. Journal of Intelligent and Fuzzy Systems, 2014, 27(2):877-890.
[11]Li H Y, Jing X J, Lam H K, et al. Fuzzy sampled-data control for uncertain vehicle suspension systems[J]. IEEE Transactions on Cybernetics, 2014, 44(7):1111-1126.
[12]Sekhar P C, Mishra S, Sharma R. Data analytics based neuro-fuzzy controller for diesel-photovoltaic hybrid AC microgrid[J]. IET Generation Transmission & Distribution, 2015, 9(2):193-207.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
装备预研航天科技联合基金(编号:6141B061402)
{{custom_fund}}